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LETTER TO THE EDITOR 

Non-equilibrium phase transitions in a driven sandpile 
model 

Sujan K Dhart, Rahul Panditts and Sriram Ramaswamytls 
t Department of Physics, Indian Institute of Science, Bangalore 560012, India 
t Cenlre for Theoretical Studies, Indian Institute of Science, Bangalore 560012. India 

Received 30 May 1995 

Abstract. We wnsmct a driven sandpile slope model and study it by numerical simularions 
in one dimension. The model is specified by a threshold slope U<, a parameter 01, governing 
the local current-slope relation (beyond threshold), and jj., the mean input curreni of sand. A 
non-equilibrium phase diagram is obtained in the e-jfn plane. We find an infinity of phases, 
characterized by different mean slopes and separated by wntinuous or first-order boundaries, 
some of which we obtain analydcally. Extensions to iwo dimensions are discussed. 

The statistical mechanics of non-equilibrium steady states is a subject of growing general 
interest. Phase mnsitions between such states are by no means as well understood as their 
equilibrium counterparts. Some insight has been gained into this problem by the study of. 
simple driven lattice models [I, 21. Sandpile models, which introduced the notion of sey- 
organized criticaliry (SOC) [3] as a general explanation for the wide occurrence of power 
laws in nature, are a natural setting in which to study phase transitions far from equilibrium. 
Sulprisingly, to our knowledge, this has not been attempted. We construct a driven sandpile 
model and show that it exhibits, in spite of its simplicity, a rich phase diagram, thus making 
it a good laboratory for the study of non-equilibrium phenomena. In particular, our model 
exhibits continuous transitions from pinned or threshold-dominated states to unpinned states; 
these are reminiscent of dynamical phase transitions in more complex systems such as sliding 
charge-density waves (cows) [4] and pinned flux lattices [5]. 

Earlier studies of sandpile models have concentrated on SOC, either in steadily flowing 
sandpiles [6, 71 or at the angle of repose [SI. Much of the work has been on crirical- 
height models, in which the update rule depends only on the height at each site; critical- 
slope models (csM) [SI have been studied to a lesser extent.  in^ this letter, we present 
a comprehensive study of a simple CSM in which the current-slope relation for slopes 
exceeding a threshold is controlled by a parameter a. We monitor the steady states of our 
model as a function of a and the mean input current ji. and find a rich~non-equilibrium 
phase diagram (figure 1): it shows that there are many phases characterized by the average 
slope uav of the sandpile. In the pinned repose phase, o;, = 0;. the slope at the angle 
of repose (we use the word pinned in the sense that the slope of the sandpile is fixed at 
the nominal angle of repose for a range of values of the mean input current jin). As jin 
is increased at fixed a, the repose phase undergoes a continuous transition (full curve) to 

3 Also at: Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India. 
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an unpinned super-repose phase at which uav - uc rises continuously from zero with an 
exponent 0 0.5 (figure 2). This continuous transition is followed by a series (which 
we argue is infinite) of similar continuous transitions. The repose phase lies between two 
first-order boundaries: one at low 01 to,a pinned super-repose (U>" z U,) region, the other 
at large 01, to a sub-repose phase (aav' < U=). The lower one of these first-order lines 
meets the continuous line at jin = 0.5 at a multicritical point. The pinned super-repose 
region contains an infinity of phases, separated by first-order lines parallel to the ji .  axis 
(figure 1); uav jumps at these boundaries. We also monitor height profiles, the equal-time 
height correlation function, the associated correlation length, current autocorrelations and 
the associated correlation time. Both the correlation length and time (figure 3) diverge at 
the continuous transitions in figure 1. We show that our main results can be understood on 
the basis of a mean-field theory and a mode-softening argument. 

In our model, integers hi specify the heights of columns of sand at the sites i of a 
one-dimensional chain (1 < i < N ) .  The stability of the column at a site is determined by 
a threshold condition which mimics the angle of repose for a real sandpile: when the height 
difference between a site i and its right neighbour (i+ 1) (i.e. the local slope ui = hi -hi+,) 
exceeds U,, some sand topples to the right neighbour, and hi is updated via 

where N(x) is the integer nearest to x ,  0 is the step function, and 01 a real number. This 
part of our update rule conserves the number of particles locally and yields a local current 
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Figure 2. A plot (full curve) of oav versus in. Broken lines a n  the asymptotes for large and 
small j i .  Arrows mark successive onsm (see the text). The inset shows a finite-size scaling 
plot for 6oN@l" versus NJ" at DI = 0.1 and A. 2 0.5 for N = €4 (+), 128 (01,256 (*) and 
512 (A) with 0 = 0.5 and U = 4. 

which increases with the local slope, thus preventing an ,unbounded buildup of particles 
in the pile?. The parameter 01 controls the cument-slope relation for slopes exceeding 0;. 

We restrict OUT study to (I > 0, since 01 < 0 yields unphysical runaway behaviour; the 
upper bound for 01 is chosen to limit the region we explore. The mean input current of 
sand particles ji. is another control parameter. At each time step, we add m particles to a 
randomly chosen site with probability p .  so ji, = p x m. We set m = 10 for specificity 
(our results do not depend on this'choice) and cover the range 0.001 < p 6 0.15, s o  
0.01 6 4. < 1.5. This addition of particles violates local particle conservation; and, for 
such an addition rate, .the mean input current and the noise amplitude per sire vanish & 
N + 00. Particles are allowed to leave our system through the right, but not the left 
(i = I), boundary: any particle that reaches the N c h  site is removed immediately. Our 
boundary conditions and update rules (1, 2) clearly pick a direction for the current (from 
left to right). 

We use initial conditions in which h; = q ( N  - i) f 6;, where 8; is an integer that 
assumes the values 0, rtl with equal probability. We update all sites simultaneously and 
allow the system to evolve until it attains a steady state, i.e. when ji. = jour. the average 
output current (the average number of partides dropping out from the open boundary per 
unit time). In practice, we say that the steady state has been achieved when these two 

t We have also studied a single-step model in which only one panicle is transferred when U; > U,. This model 
displays the first of the onsets of figure 2 with the same exponents; however. the heights become unbounded for 
in > 1. A similar model studied in [71 by Carlson er a/ showed no continuous transitions since the high-noise 
limit was studied. Further. if we use real continuous heights h;. with 6>(q - uc) + ;[I + tanh((o; - oc) /y ) ] ,  
the onset is replaced by a smooth crossover which becomeS a sharp vansition as y + 0. 
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currents are within 1% of ,each other. Once the steady state is obtained?, we accumulate 
data for 105-106 updates per site (UPS). Data for averages are stored after every 50 UPS. We 
also average our data over 10-50 different initial conditions. To minimize boundary effects 
we ignore a few sites (three or more if necessary) near each boundary while computing all 
averages. 

The non-equilibrium steady state of our model can be characterized by the 
mean slope 0;" (the local slope U; averaged over i and many time steps), 
which is the order parameter for our model. We also monitor the mean 
current jav, the output current j,,, the equal-time height correlation function 
Chn(r) = (([hf - (h;),][h;+, - (hl+r) , ] ) j ) t ,  and the output current autocorrelation function 
Cj j ( r )  = ([;Aut - ( jouJ, ] [ jAz  - (j,,ut)t]),, where (. . . ) j  and (. . .), denote averages over i 
and time f respectively. 

In figure 2 the asymptotes (broken lines) og, = 0; and 0;" = jj./(Zcy) indicate the 
behaviour of uav at very low (< 0.5) and very large (> 0.5) jin, respectively. The full 
curve (for cy = 0.1 and N = 128 in figure 2) shows that the approach to these limits is 
non-trivial: as ;io increases there are successive onsets, indicated by arrows. There might 
well be an infinity of such onsets (see below), but they become bard to resolve numerically 
at large ji , .  The inset shows a finite-size scaling plot at the first of these onsets. For 
;io 5 0.5, uav = oC = 10, i.e. we have threshold-dominated behaviour at low A.. The 
asymptotic behaviours can be understood via the mean-field theory presented below. 

t The time required to reach the steady state increases as Nz;  also it is high for CI 2 0 and 01 2 0.5 and seems to 
inerease monotonically with decreasing j,n. 
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Figure 4. A plot of j ;  versus a; (equation (2)) for a = 0.1 and 0.125 and a$ = 10. 

The evolution equation for hi is 

hf+l - hi = - j,! + j:-, + qf (3) 
where the noise qf has a mean j i J N  that accounts for the addition of particles. If 
we average over this noise, then, in  the steady state, we get j ;  - jf-1 = ji./N. I f  we 
impose the boundary condition j i=N = ji., we get ji = i j J N  and thence a mean current 
j, = (( j ;) ,) !  = a j1J2 for N + 00. We use these exact results to check our 
simulation. Our mean-field theory assumes that 

((a(Eui)@(c; -~c));), 2 ( (N(a~i));)~ ((@Cui - G));), . (4) 
For large jin, most U; 1 uc, so we further assume ((@(U< - uC));)( z= 1. If its argument is 
large, the discontinuities of N(au;) are small relative to aui, so, on averaging (2) ,  we make 
the approximation jav = ( (N(aq)) i ) ,  = EO;,; whence U, j i n / ( k ) ,  the large-ji. asymp- 
tote of figure 2. Given these approximations, equation (3) yields a discrete diffusion equation 
for hf with a spatially uniform source j b / N .  If we solve this with our boundary conditions 
we get parabolic height profiles for large ji., which we also find in our simulations [9] .  , 

The current-slope relation (Z), shows that (figure 4) for a uniform profile with slope U ,  

no current flows if U i uc. For U 1 uc, the current grows with the slope in discrete steps, 
which reflect the N function in (2). As we increase a, the width of the step at j i  = I 
shrinks until it becomes a single point at a = 0.125, the value at which the continuous 
transition at jh'= 0.5 (figure 1) terminates. This can he understoodas follows: if we turn 
figure 4 on its side, we see that the slope is pinned at U, below some threshold value of j i .  
Beyond this threshold, the slope rises sharply before it saturates at another value of U: The 
onsets in figure 2 are just the sharp steps of figure 4 rounded by our spatiotemporal average. 

The vanishing of a step' in figure 4 can also be linked with the termination of the 
continuous line via a mode-softening argument. Consider, for example, the step at j i  = 1 
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10 , + + + +  Figure 5. Variation of uav with U for N = 64 and 
jh = 0.05. The first-order jumps in U,, can be 
clearly seen from this figure. The overall envelope 

0.W 0.0% 0.04 0.045 ~ 0.05 of  ihe neps fits to ihe form oav = I / ( ~ u )  (see the 
a text). ~~ 

for which the 11 < U; < 14 (figure 4 with 01 = 0.1). All slopes ui in this interval are 
equivalent in the sense that the sandpile dispenses the same amount of local current for all 
of them. Thus the restoring force, in response to a change of an on-site slope from u to 
u + 1, vanishes and leads to divergent correlation lengths and relaxation times (figure 3). 
Clearly the infinity of steps in figure 4lmply an infinity of onsets in figure 2, though the 
large-j, onsets are hard to resolve numerically. 

The above arguments do not yield the value of ji. at onset since our spatiotemporal 
average shifts the values of the thresholds in figure 4. The actual value of ji. at the 
onset depends on the distribution of slopes in the interior of the pile. We have done some 
numerical and analytic calculations [9] on a 'single-step model' (see footnote on page L565). 
which justify the occurrence of the transition at ji. = 0.5. 

0.5 for 01 = 0.1 and 
N = 32,64,128,256 and 512 and from a finitesize-scaling analysis (figure 2) obtain 
the exponents ,3 = 015 and U = 4.0, where J = I ji. - jcl/jc with j, = 0.5, and we use the 
scaling form 8u = N-p/"F(J"N) ,  with 8u = um - uc. The exponent U, which we obtain 
in this way from finite-size scaling, might not be the same as the actual correlation length 
exponent as has been pointed out in the context of sliding CDWS 141. 

In the low-jj, regime, as a increases from 0 to 0.05, U, 'decreases in steps of one 
(figure 5). The values of 01 at which these steps occur yield the first-order boundaries of 
figure 1. All these first-order boundaries end at critical points in the range 1 5 ji. 5 1.2. 
The overall envelope of the steps in uav can be fit approximately to a form uav - 1/(201). 
This behaviour follows from the update rule equation (2): N(01u;) = 0 for au; 4 t ,  so, 
if a c 1/(2uc) (= 0.05 for uc = lo), even a slope U; > uc may become stable; e.g. with 
uc = 10 and 01 = 0.04, N(aoj) = 0 for 0;. = 0; + 1 anduc + 2, so the slope at the effective 
angle of repose turns out to be U& = uc + 2 = 12. As (Y decreases, U& also increases 'in 
discrete steps, leading to the first-order lines at low a. 

We fit the equal-time height correlation function C h h ( r )  to an exponential form 191 which 
then yields a correlation length. Figure 3 shows this correlation length thh versus ji. for 
a = 0.1 at different values of N .  Clearly $h diverges at ji. Y 0.5 and also at subsequent 
continuous transitions. We have not characterized the divergences by an exponent because 
&,h exceeds our system size somewhat before the transition (so we do not show data near 
jn = 0.5). 

For the first onset we calculate %e mean slope near ji,, 
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The output current autocotrelation function Cjj(s) does not fit an exponential form 
very well. However, we have extracted correlation times qj from the area under Cjj(s) 
(normalized so that Cfj (r  = 0) = 1). Figure 3 shows plots of tjj versus j i .  for CY = 0.1, 
which sharpen with increasing N. This sharpening shows up clearly near ji. = 0.5 and 
leads to an increasing trend in rjj near the next onset (ji. E 1.1). 

It i s  generally believed that non-equilibrium phase transitions cannot occur in stochastic, 
one-dimensional models with short-range interactions [lOJ, though there are a few recent 
counterexamples [ 111. Our model provides yet another counterexample. We believe 
the transitions in our model occur because the noise amplitude per site vanishes as 
N -+ CO. This is why our one-dimensional model with short-range interactions exhibits 
phase transitions. We have checked that these phase transitions get rounded if there is a 
finite noise amplitude per sire as N + 00. We have also performed simulations on two- 
dimensional versions of our model. Our preliminary results indicate that, with low noise and 
a variety of boundary conditions, such two-dimensional models show the same transitions as 
the onedimensional model discussed here. In the steady state, the two-dimensional system 
behaves like an uncoupled one-dimensional system, so no transitions occur in the high-noise 
limit. The details of this study will be published elsewhere [9]. 

We have shown that our driven sandpile model displays a variety of steady states and 
many transitions between them. This richness, coupled with its simplicity, makes our 
model a promising one for the study of non-equilibrium phenomena in driven systems. As 
noted above, it displays transitions similar to those in other driven systems, e.g. our onset 
transitions (figure 2) are like unpinning transitions in sliding CDWs [4] or in pinned flux- 
lattice systems [SI although clearly in a different universality class. It would be interesting to 
study whether this similarity is merely superficial. There are some obvious ways in which 
the CDW models are  different^ from ours: (i) they exhibit pinning because of quenched 
randomness but have no extemal noise; and (ii) no current flows in their pinned states. The 
importance of these differences needs to be elucidated. In this general context it is interesting 
to study the zero-current limit of our model. We find that it ddes nor show conventional 
soc when the pile is allowed to relax, after each input of sand, to a completely quiescent 
state in which no further transfers are possible (k la Bak et al [3]). The precise~forms of 
the distribution of avalanche sizes, etc. will be reported elsewhere [9]. 

We thank CSIR and ~BRNS (India) for support, and the SERC (IISc Bangalore) for 
computational facilities. 
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